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Abstract. The classical Frobenius theorem, both in its local and global formulations, is 
generalised to superanalytic supermanifolds. As an application, it is proved that a coset 
space G/  H (where both G and H are super Lie groups) is a supermanifold. Existence 
and uniqueness of local Rows of tangent vector fields is proved. 

1. Introduction 

The theorem of Frobenius is a fundamental tool for the development of ordinary 
differential geometry. It is therefore no surprise that in the study of the geometry of 
supermanifolds (Rogers 1980, 1981, Jadczyk and Pilch 1981, Cianci 1984, Bruzzo and 
Cianci 1984a, b) Frobenius theorem is also found to be of basic importance. For 
instance, it is essential to the study of the geometry of coset spaces G /  H (both G and 
H being super Lie groups), which are involved in the symmetry breaking of supergauge 
theories and in the dimensional reduction of field theories on supermanifolds as well 
as in the (super) group manifold approach to gauge theories (Ne’eman and Regge 1978). 

Proofs of the local Frobenius theorem for Kostant’s graded manifolds, as well as 
for the strictly related Berezin-Leites supermanifolds, have appeared in the literature: 
see Kac and Koronkievich (1971), Giacchetti and Ricci (1981), Shander (1983b). In 
this paper we generalise these results in two ways: firstly, we follow the more general 
axiomatic approach to supermanifolds by Jadczyk and Pilch ; secondly, we also prove 
the global version of the theorem. 

It is our opinion that the axiomatic approach is more profitable, since it allows us 
to dispose of a specific choice of the Banach space used to model the supermanifold, 
and seems more suitable for quantum-mechanical applications (Jadczyk and Pilch 
1983). A further advantage is that the resulting differential geometry is similar to the 
ordinary theory and more flexible for physical applications (Bruzzo and Cianci 
1984a, b, c). 

We prove the theorem in the case of superanalytic supermanifolds. Since the local 
theorem is basically a matter of integration of a system of differential equations, we 
have to prove an existence and uniqueness theorem for a certain type of differential 
equation where both the dependent and the independent variables take values in 
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vector superspaces. Once again, the result is obtained by resorting to the underlying 
Banach structure. 

The paper is arranged as follows. In 0 2 we state the main results; then, the 
Frobenius theorem is applied to the study of coset supermanifolds. A theorem on the 
existence and  uniqueness of local flows of tangent vector fields is proved. This requires 
a redefinition of the tangent bundle, and the new definition is compared with the old 
one. Section 3 is devoted to the proofs. 

Concerning definitions and notations, we rely completely on Jadczyk and Pilch 
(1981) and Bruzzo and Cianci (1984a). The necessary background in Banach space 
analysis and  infinite-dimensional differential geometry may be found in DieudonnC 
(1960) and  Lang (1972). 

2. Frobenius theorem and local flows 

Let M be a n  (m, n)-dimensional supermanifold, and E a vector superspace (vss). A 
vector superbundle (VSB) E over M with standard fibre E is defined as in the case of 
ordinary manifolds (Lang 1972), the basic principle being here the supersmoothness 
of the maps involved. The projection E + M will be denoted by T ~ ; .  

A section of E is a supersmooth map s: U + E ( U  is an open in M )  such that 
7rE 0 s = id,,. Quite obviously, T (  M)-defined as the union of tangent spaces to M-is 
a VSB with standard fibre Q"',", and its sections are the tangent vector fields on M. 

A sub-bundle of E is a triple ( F , S , f ' ) ,  where F is a VSB over M,  f :  F +  E and 
f': M + M are supersmooth, and 

( i )  rE o f = f ' o  rF; 
(ii) f :  T;'(x)+ T L '  of'(x) is a vss homomorphism. 
A sub-bundle F of T ( M )  is said to be involutive if, given sections X ,  Y of F, 

[ X ,  Y ]  is a section of F too. F is said to be integrable if for each X E  M there exists 
a sub-supermanifold ( N ,  i) of M such that x E i( N )  and i, T,( N )  = 7r;I 0 i ( y )  for each 
y E N. Such a sub-supermanifold is called an integral S-manifold ( ISM) of F through 
X. 

Now we are in position to state the local Frobenius theorem. 

Theorem 2.1. Let M be an  (m, n)-dimensional superanalytic (SA)  manifold. A sub- 
bundle F of T ( M )  is integrable if and only if it is involutive. If that is the case, 
around every X E  M there is a chart ( U ,  x ' (  .), . . . , x"'+"( 9 ) )  such that the S-manifolds 
given by xp+I , .  . . , xm, xm+', . . . , xm+"  =const are ISM'S of F (here dimff = ( p ,  4 ) ) .  
Finally, the ISM'S of F are locally unique, in the sense that, given two ISM'S ( N ,  i) and 
( K , j )  of F through x, there exists an open neighbourhood V of x such that i( N )  n V = 
j ( K ) n  V. 

A maximal integral S-manifold of F through x is an  ISM which contains any other 
ISM through x. 

Theorem 2.2. (Global Frobenius theorem) Under the same hypotheses of theorem 2.1, 
there is a unique maximal connected ISM through each X E  M. 

An interesting straightforward consequence of these results is: 
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Theorem 2.3. Let G be a super Lie group and ( H ,  i )  a closed sub-SL-group of G ;  let 
T :  G + G/ H. Then G/ H has a unique superanalytic structure such that 7~ is super- 
analytic. Moreover, there exists local superanalytic sections of G I H  in G. 

Now we turn to the study of local flows of tangent vector fields. In order to do 
that, we must look at the structure of T ( M )  in some detail. 

Each tangent space T , ( M )  may be defined as the set of equivalence classes of 
ordinary curves y :  I + M ( I  being an open neighbourhood of 0 E R) under the usual 
equivalence relation (Jadczyk and Pilch 1981). One can also introduce a supercurve 
as a supersmooth map 5: J + M (J being an open neighbourhood of 0 E Qo) and state 
that two supercurves 5,t' are equivalent (6  - 5') if t ( 0 )  = t'(0) = x E M and ( = 

(in terms of a chart around x ;  D is the Frichet differential). Then we have: 

Theorem 2.4. The set of equivalence classes of supercurves through X E  M under - 
is vss-isomorphic to T,( M ) .  

It is straightforward to verify that the isomorphism extends to the corresponding 
vector superbundles. We may therefore speak of integral supercurves of a given tangent 
vector field. 

We may also introduce the related concept of localj7ow, defined as a supersmooth 
map 4 :  J x U +  M,  U an open in M, such that: 

(i) for each a E J, 4(a ,  . ) :  U-,  M is a superdiffeomorphism; 
(ii) 4(0, x )  = x for each x E U ;  
(iii) 4 ( a  + b, x )  = 4(u ,  + ( b ,  x ) )  whenever the two sides are defined. 
Usin$ local coordinates, we may associate a tangent vector field X to 4 :  

X ( P )  = P a x A  O 4(a, P ) l a = o ( m A ) , ,  P E  M.  

In the SA case there is also a local converse; let us say that a tangent vector Y E  T ( M )  
has vanishing body if its components have vanishing body. 

Theorem 2.5. Let M be an SA manifold, X E T (  M )  an SA field, x E M and X ( x )  # 0. 
Then there exists an open U around x, an open neighbourhood J of O E  Qo and a 
unique flow 4 :  J X U + M whose associated vector field is just X I u ;  moreover 4 is SA?. 

If X has non-vanishing body, this theorem follows from theorem 2.1, since X is 
in a one-to-one correspondence with a sub-bundle of T ( M ) .  If that is not the case, 
we use the more general result given by the following lemma: 

Lemma 2.1. Let U ben an open in Q",", J an open around O E  Qo, f: J x U + Q""" 
an SA map, and uo E U. Then there exists an open ball 8 c J of centre 0 and a unique 
mapping U :  8+ U which satisfies the conditions: 

u ' ( s )  =f(s, u ( s ) )  ( 2 . l a )  

u ( 0 )  = U,: (2.lb) 

moreover, the dependence of U upon s and uo is superanalytic. 

t Analogous results in the case of Berezin-Leites supermanifolds, graded manifolds and Rogers' supermani- 
folds were given respectively by Shander (1980, 1983a), Giacchetti and Ricci (1981) and Boyer and Gitler 
(1983). 
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Proof: Take into account equations (2.1) by considering a real s and use the standard 
local existence and  uniqueness theorem (Penot 1970) ; then apply the z-extension 
(Rogers 1980, Jadczyk and  Pilch 1981) to the solution, hence obtaining an  SA function 
which satisfies all the requirements of the lemma. 

An immediate consequence of these results is the following: 

Corollary 2.1. Let M be an  SA manifold, X E T ( M )  superanalytic, X E  M. A chart 
( U ,  x ' (  .), . . . , xmin( . ) )  around x such that XIu = (a/ax') (x '  even) exists if and only 
if X has non-vanishing body. 

Proof: Since GL(m, n )  acts transitively on the set of elements of om-" having non- 
vanishing body (see theorem 2.4 of Bruzzo and Cianci 1984a), we may choose around 
x coordinates y ' (  .), . . . , y"-'"( . )  such that X ( x )  = ( a / a y ' ) ,  if and  only if X ( x )  has 
non-vanishing body. Then the proof goes as in the classical case (see e.g. Warner 1971). 

In  analogy with this treatment of tangent vector fields, one could envisage defining 
the odd vector fields on M as equivalence classes of 'odd' supercurves 6 :  Q1 -+ M. 
This is not convenient-at least in the SA case-since an  SA function of an  odd  argument 
is necessarily linear, and this would force the fields to be 'geodesic'. 

Finally, let us note that the previous results, while yielding existence and uniqueness 
properties of solutions of differential equations on vss's d o  not provide any method 
to find out the solution explicitly. In  the SA case, a useful method is provided by the 
comparison of power series. For instance, set M = Q1*' and consider the vector field: 

X = (a/ax) + [ ( a / a € )  

where (x, 5) are coordinates on Q ' , ' .  We wish to find the integral curve of X through 
the point (0, a ) .  We must solve: 

where s is a variable in Qo. The first equation gives x(s) = s ;  then, setting 

5 

5 ( s ) =  2 6,s" (with bo= a ) ,  
n = o  

and substituting into the second equation, we obtain the following relations: 

so that 

The integral curve is therefore 
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3. Proofs 

In this section we first prove theorem 2.1, which guarantees the existence of local 
ISM'S; then these are patched together by means of an SA atlas, thus obtaining the 
maximal ISM through a given point. As a consequence theorem 2.2 may be proved. 

Concerning theorem 2.1, one could think of mimicking the classical proof (see e.g. 
Warner 1971) based on induction on the dimension of the sub-bundle. This does not 
appear to be useful, since it entails using corollary 2.1 for each of the vector fields 
which generates the sub-bundle, and this imposes restrictions (for an analogous 
situation in the case of graded manifolds see Giacchetti and Ricci 1981). It is most 
profitable to take on the Frobenius theorem in Banach spaces (Penot 1970) and to 
prove directly the further properties needed in our case (basically, the superanalyticity 
of some maps). 

Thus, let us consider a sub-bundle 7 ~ ~ :  F +  M of T ( M ) .  The standard fibre [F of 
F is vss-isomorphic to QPV9, with p s m, q S n ; moreover, there exists a vss 6 such 
that Q"," -FOG (see theorem 2.4 of Bruzzo and Cianci 1984a). Let us denote by pI 
(resp. p 2 )  the projecion of Q"," onto ff (resp. G). Let ( U, $) be a chart around x E M ;  
we may set $( U )  = A x B, with A c F, B c 6. A vector 2, E Tu( M )  has a coordinate 
representation: 

Z" = (X~X.,,), Ykl , )  (3.1) 

where x = p l $ ( u ) ,  and y = p z $ ( u ) ,  X = p , Z ,  Y = p 2 Z .  Specialising equation (3.1) to 
the vector fields V in F (or, more exactly to the sections of f*rr;'( U ) ,  where f :  F +  
T ( M ) )  we have: 

ViX,Y) = ( X i x , , , ,  XkL)4(X,  Y)) (3.2) 

where, for each (x, y ) ,  +(x, y )  is a Q,-linear map F+G; actually, locally we have 
f* = ( id ,  +), so that $(x, y )  is &-linear, continuous and SA in x, y ;  it will be regarded 
as a matrix, which we assume to act from the right. The involutivity of F may be 
stated as a condition on 4 :  

where D ,  (resp. D2) is the FrCchet differential with respect to the first (the second) 
variable. Equation (3.3) may be written in component notation as follows: if A, B 
(resp. i , j  resp. cy, p )  are indices in Qm3" (resp. F, resp. G),  we have: 

(3.4) 

where commas denote FrCchet differentiation. 

exists an SA map cy: A x B + G such that: 
Now, from (3.2) we see that, in order to prove our result, we must show that there 

DIcy(X, Y )  = 4(x,  a(x,  y ) )  

a(x0, Y )  = Y 

V(x, y )  E A x B 

(for a fixed xo E A and each y E B ) .  
(3.5) 

Looking at ff and G as B-spaces, we may use theorem 1.1 of Penot (1970) to deduce 
that an cy solution of (3.6) exists if and only if (3.3) holds; furthermore, a is unique 



422 U Bruzzo and R Cianci 

and analytic. Equation (3.5) implies directly that a is SA in x since D,a is d and 
therefore acts as a matrix. To prove superanalyticity in y it is enough to look at the 
Taylor expansion of a around xo: 

a (x, y ) = y + (x - xo 1 4 (xo, y ) + fr (x - xo, x - xo) Dl d (xo, Y 1 
+ [ ~ ~ - ~ o ~ d ~ ~ o , ~ ~ , ~ - ~ o l ~ 2 d ~ ~ o , ~ ) ~ + .  . . . (3.6) 

Each term of this series is SA in y since 4 is. The absolute convergence of the 
power series implies that a is SA in y too. 

Now consider the maps x v :  x +  (x, a(x ,  y ) ) ;  they are SA and injective, since Ox, is 
not singular for any (x, y )  E A X B. With a suitable restriction of the neighbourhoods 
involved, and using theorem 2.1 of Penot (1970) and proposition 5.3 of Jadczyk and 
Pilch (1981), we deduce that x;’ exists and is SA. Then the SA diffeomorphism @, 
defined by its coordinate representation @(x, y )  = x,(x), maps A x { y }  into a local ISM 

of F and entails the existence of the ‘adapted’ coordinate system mentioned in the 
statement of the theorem. The local uniqueness is implicit in the proof. 

So far we have proved theorem 2.1 in the case of SA manifolds; the case of 
supersmooth manifolds still presents some problems, since we do  not know how to 
prove that a is supersmooth in y. However, this problem does not arise when we want 
to find the integral S-curves of a S-smooth tangent vector field through a given initial 
point, since in that case smoothness with respect to the initial datum is not required. 

We are now in a position to prove theorem 2.2. The maximal connected ISM through 
a given point P E  M may be built up as in the classical case (see e.g. Warner 1971). 
Let K p  be the totality of the points of M which may be joined to p by means of a go, 
piecewise SA supercurve whose tangent vector lies in F. If {(U,,  $a)} is an atlas on 
M,  and p E U,, set VDp = U, n Kp’ If the atlas is suitably chosen, V,, is a local ISM of 
F through x. Define a map x,,: Vp+F by setting x,,(z) = p ,  0 $,(z). We may show 
that {( Vm,, x,,)} is an SA atlas on Kp. The only non-trivial point in doing that is to 
check that the transition functions are SA;  to this end, let z E V,, A V p p ;  then: 

x o p  =PI O $ p ( z )  =PI ($6 O 4;’)  O (cl,(z) =p1 ($0 $ , I )  O ( x , p ( z ) + p z  (cla(z)). 

Since p 2 0  $,(z) is constant on V,,, and p ,  0 0 $:I is SA, the transition function 
relating x , , ( z )  to x p p ( z )  is SA. 

So we have proved that K p  is an SA-manifold. Its maximality is obvious by 
construction. We have only to prove its uniqueness (up to S-diffeomorphisms). Let 
( N ,  i )  and ( K ,  j )  be two maximal ISM’S through p .  We have the diagram: 

where the maps i, j are SA and injective. N and K being also B-manifolds, we may 
advocate the uniqueness theorem in B-manifold theory (Lang 1972) to deduce that a 

diffeomorphism p :  N +  K exists. In particular, both p and p - ’  are continuous, 
and a known result (Bruzzo and Cianci 1984a, lemma 3.1) implies that both are SA. 

So K and N are sA-diffeomorphic, and this concludes the proof. 
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